Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max).

نویسندگان

  • Kelly M Gillespie
  • Alistair Rogers
  • Elizabeth A Ainsworth
چکیده

Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO(2)]) or chronic elevated ozone concentration ([O(3)]; 90 ppb), and then exposed to an acute O(3) stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O(3) treatment. Growth at chronic elevated [O(3)] increased the total antioxidant capacity of plants, while growth at elevated [CO(2)] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O(3) stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O(3)]. Growth at elevated [CO(2)] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO(2)] and [O(3)] will differentially affect the antioxidant system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2.

Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unpreceden...

متن کامل

Photosynthesis and photorespiration in soybean [Glycine max (L.) Merr.] chronically exposed to elevated carbon dioxide and ozone

sampling dates. The inhibitory effects of elevated O 3 on photorespiration-related parameters were generally The effects of elevated carbon dioxide (CO 2 ) and ozone commensurate with the O 3 -induced decline in A. The (O 3 ) on soybean [Glycine max (L.) Merr.] photosynthesis results suggest that elevated CO 2 could promote proand photorespiration-related parameters were deterductivity both thr...

متن کامل

How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently?

Changes in leaf-area index (LAI) may alter ecosystem productivity in elevated [CO2] or [O3]. By increasing the apparent quantum yield of photosynthesis (phi(c,max)), elevated [CO2] may increase maximum LAI. However, [O3] when elevated independently accelerates senescence and may reduce LAI. Large plots (20 m diameter) of soybean (Glycine max) were exposed to ambient (approx. 370 micromol mol(-1...

متن کامل

The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean.

The projected rise in atmospheric CO2 concentration is expected to increase growth and yield of many agricultural crops. The magnitude of this stimulus will partly depend on interactions with other components of the atmosphere such as tropospheric O3. Elevated CO2 concentrations often lessen the deleterious effects of O3, but the mechanisms responsible for this response have received little dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 62 8  شماره 

صفحات  -

تاریخ انتشار 2011